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The in¯uence of the shear±tensional near ®eld on the dynamic characteristics
of force-excited deep beams is addressed. From a transform solution,
approximations are derived and analysed for several con®gurations. The
dynamic characteristics are examined in terms of the ``point'' mobility,
established on a complex power basis. It is found that both the real and
imaginary parts are signi®cantly in¯uenced by the shear±tensional near®eld in
an intermediate region between a slender beam behaviour and an asymptotic
waveguide behaviour. The in¯uence manifests itself in an elevated real part
owing to ``leakage'' from the evanescent ®eld to the propagating one for real
materials possessing losses and in a logarithmic weighting of the sti�ness
controlled imaginary part. No explicit dependence on the size of the indenter is
identi®ed. The estimation procedures developed, distinguishing between
moderately deep and deep beams, are physically valid in a qualitative sense but
furnish conservative estimates for the real part of the force mobility, while
those for the corresponding imaginary part slightly over-estimate the
antiresonant region and either give the overall trend or an approximate
in¯uence of the excitation distribution in the upper range of Helmholtz
numbers for moderately deep and deep beams respectively.

# 1999 Academic Press

1. INTRODUCTION

The implications of concentrated force and moment excitation of linearly elastic,
homogeneous thick plates and deep beams were treated in reference [1]. For the
force and moment-excited plate as well as the moment-excited deep beam,
physically correct descriptions were derived for the shear±tensional near®eld
leading to manageable closed-form expressions for structures thick or deep in
comparison with the typical size of the indenter. Regarding the force mobility of
arbitrarily deep beams, similar descriptions were not developed.
In a broad sense the shear±tensional near®eld problem, which relates to a

variety of engineering applications ranging from ultrasonic metal forming to
earthquake-safe design, has attracted substantial attention. The particular aspect
of the in¯uence of a shear±tensional near®eld in the two-dimensional case,
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surprisingly however, is rarely found directly addressed and reported in the
literature. Lamb [2] and Miller and Pursey [3] considered the two-dimensional
problem in terms of an in®nite strip vibrating normally to the free surface of an
elastic half-space and radiating to its interior whilst no attempt was made to
clarify and interpret the near®eld. Heckl [4] also considered the case of a line
force on an elastic half-space and established numerically an expression for the
imaginary part of the mobility. The plate, subject to a line force, was studied by
Ljunggren [5] who obtained a series solution for the contributions to the
imaginary part of the mobility from the poles associated with Lamb waves [6]. A
comparison, however, was made with an approximation for the in¯uence of
shear±tensional near®eld developed from the ®eld due to multiple point forces.
This expression, thus based on a plate behaviour (plane strain), exhibits a
logarithmic dependence on the ratio of plate thickness to width of the line
indenter and results in a lower estimate of the near®eld effect than that of the
series solution.
Herein the two-dimensional waveguide (plane stress) problem is revisited

whereby the shear±tensional near-®eld is considered in particular, in an effort to
supplement the previous study. Drawing upon the limited discrepancy in
dynamic characteristics for different applied stress ®elds demonstrated in
reference [1], the arbitrarily deep beam is assumed subject to force excitation via
a soft indenter, establishing a uniform stress at the excitation area.

2. THEORETICAL ANALYSIS

2.1. FINITE DEPTH

One of the primary objectives in reference [1] was to investigate the
signi®cance of the near®eld due to concentrated excitation and efforts were made
to establish closed form expressions for the associated effects. Assuming linearly
elastic material properties and employing a continuum formulation, integral
solutions for point mobilities of arbitrarily deep beams were developed on a
complex power basis. Regarding the beam case the asymptotic approach
adopted for the description of the near®eld effects was found valid only with
respect to moment excitation and an expression for force excitation remains.
With the beam mobility from reference [1] which, normalized with respect to

the real-valued characteristic mobility of a shear beam, Ysh=1/(2rcT`t), of
width t and height 2`, see Figure 1, is given by,

Figure 1. Force excited, deep beam.
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the dynamic characteristics can be detailed for a number of structural
con®gurations.
For small kTh, i.e., slender beams, the hyperbolic functions can be expanded

which, for the two parts of the integrand corresponding to anti-symmetric and
symmetric motion respectively, means,
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The ®rst part has a real-valued pole at k=0, for which, taking the Cauchy
principal value, the contribution becomes,
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For the second part there are three real-valued poles at k=0 and
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. The contribution from the pole at zero in this case becomes,
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while that of the quasi-longitudinal wave is found from a contour integration in
the upper half-plane to be given by,
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for small Helmholtz numbers.
Upon including also the next term in the expansions of the hyperbolic

functions the ®rst part of the integrand in equation (1) is now found to be,
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as well as,
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The second part of the integral can be found to tend to,
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for slender beams. These are thus the same quasi-longitudinal poles as found
above. For deeper beams, on the other hand,
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where the region of validity is dictated by the expansion. Following the
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procedure used above leads to the result,
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The asymptote for slender beams as the Helmholtz number, kT`, tends to zero
therefore becomes,
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whereas when the beam depth is increased, equation (6a) must be employed
instead of equation (6) as noted above and,
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which, for a Poisson's ratio around 0.3, is typically valid up to the dilatational
resonance.

2.2. INFINITE DEPTH

In the case where H=` becomes very large and tends to in®nity, the expansions
employed above are no longer valid. Instead, the asymptote introduced in
reference [1, see equation (6)] applies and as demonstrated in Appendix I, the
transform solution for a soft indenter becomes,
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where the branch points at k � ����������������
1ÿ �=2p

and k=1 must be observed.
Additionally, there is the pole related to the Rayleigh wave, the locus of which
can be obtained numerically and which for a Poisson's ratio around 0�3 is found
to be approximately at kR11�0915. From the integrand one can infer that for
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small Helmholtz numbers, kT`, the integral becomes independent of this number
and thus constituting simply a complex constant. Accordingly, this means that as
long as the `sinc' factor of the integrand, associated with the excitation, can be
set to unity as an acceptable approximation, the slopes of the real and imaginary
parts of the mobility are known.
In Figure 2 are shown the real and imaginary parts of the integrand for small

Helmholtz numbers, taking the branch points into account. It is seen that a
contribution to the real part of the mobility, associated with the imaginary part
of the integrand, is only obtained for kE 1 whereas the imaginary part contains
contributions from the lowest branch point and upwards. The imaginary part of
the integrand is further seen to be essentially constant and approximately equal
to its value at the origin. This means that the real part of the mobility can be
approximated by multiplying the factor in front of the integral by the value of
the integrand at the origin. Thus, the real part of the mobility is approximately
found from,
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Figure 2. Ð, Real and - - - - imaginary parts of the integrand in equation (12) for a vanishing
Helmholtz number.
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which renders a slight over-estimation. Moreover, the in¯uence of the excitation
distribution, �1
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can also be approximated. For Helmholtz numbers below unity, the cosine can
be expanded and the sine integral can be linearized to give,
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whereas in the case of Helmholtz numbers larger than unity, retaining the
assumption that the integrand can be treated as a constant, the sine integral term
can be set to p/2 in an overall sense and the cosine term neglected implying that
the slope of the real part is reduced as,
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In an absolute sense, the real part of the force mobility therefore increases with
frequency in the region below a unity Helmholtz number to become practically
frequency independent there above.
In contrast, the real part of the integrand in equation (11) is not so amenable

to approximate analysis or computations. It is clear, however, that the main
contribution to the integral stems from the part above the pole since the positive
and negative peaks tend to cancel. The lower limit of integration, accordingly,
can be elevated somewhat from unity. Although, for small enough Helmholtz
numbers, the factor of the integrand relating to the excitation can be set to
unity, this is not applicable since the integral becomes divergent. Accordingly,
the linear theory response to a true point force excitation will be physically
singular. It is therefore necessary to retain the distributed excitation in assessing
the imaginary part of the mobility.
For the major part of the integration range, the kernel is essentially inversely

proportional to k such that the imaginary part of the mobility can be
approximated as
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where M is a number slightly larger than kR. For small Helmholtz numbers and
limited k, it is observed that the integral will have a predominantly logarithmic
behaviour except for the range close to the lower limit. As k grows, the
integrand overall becomes inversely proportional to the third power of k.
Following this reasoning, two principle dependencies can be introduced,
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The constants a1±a4 can be chosen such that an adequate crossover is established
for a Helmholtz number of x.
To gain additional con®dence in the functional dependencies introduced above

it is observed that the integral in equation (16) has a series type of solution
whereby,
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Again, for small Helmholtz numbers the trigonometric terms can be expanded
while the cosine integral can be substituted by,
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such that,
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In the region above, one ®nds that the dominant term yields,
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Figure 3 Normalized real (top) and imaginary (bottom) parts of edge mobility. (Ð) Numerical
evaluation Approximations for small (� � � � ) and large (- - -) Helmholtz numbers.
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Accordingly, the imaginary part of the force mobility will have a logarithmic
weighting in the region below unity to decrease linearly in the upper with
oscillations around zero. This suggests that although the imaginary part is
positive for small Helmholtz numbers, the shear±tensional near®eld cannot be
regarded as a pure local deformation, cf. reference [1].
In order to test this indication, the transfer mobility can be considered which

in the case of very deep beams, tends to,
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This demonstrates that, besides the propagation dependence, there is no explicit
dependence on distance. Upon applying the reasoning introduced above, it can
be shown that for small Helmholtz numbers, the integral, again, results in a
logarithmic dependence,

Figure 4. Normalized real (top) and imaginary (bottom) parts of mobility of edge-excited semi-
in®nite plate - - - - and deep beams; � � � � � H=` � 5; - - -, H=` � 10; ÐÐ, H=l � 20; - � - � -
H=l � 100; andÿ �ÿ; H=` � 1000.
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Im�YC1
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which differs from the characteristic 1/x dependence of a pure local deformation
[7].
In Figure 3 are compared the numerically evaluated, normalized real and

imaginary parts of the edge mobility with the corresponding approximations
from equations (13) and preponderant functional dependencies from equations
(17) respectively. It is observed from Figure 3 that the real part approximation
for small Helmholtz numbers overestimates the numerically evaluated mobility.
This is due to the approximation with the integrand set constant, a value which
is about 25% too high in comparison with that obtained numerically. In the same
region, the approximation for the imaginary part satisfactory presents the
principle behaviour. For large Helmholtz numbers, the real part of the mobility
approaches the asymptotic behaviour in a weakly oscillating manner while the

Figure 5. Normalized real part of mobility of edge-excited semi-in®nite plate ÐÐ and deep
beam with H=` � 1000; Z=10ÿ3 � � � � � and Z=10ÿ6 - - -.

Figure 6. Normalized imaginary part of transfer mobility for a deep beam with H=` � 100; Ð,
x=` � 0, - - -x=` � 1; ÐÐx=` � 1�1; - � - � ,- x=` � 1�3; Ð �Ð x=` � 1�5 and � � � � �, slope of a stiff-
ness governed mobility.
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imaginary part exhibits pronounced peaks and troughs relating to the distributed
excitation. For the latter part therefore, the derived base function for the upper
range can be brought to establish the peak envelope.
Upon comparing the edge-excited plate mobility with that of the beam for

various depth to indenter lengths, see Figure 4, it is seen that while the edge
mobility of the semi-in®nite plate consistently constitutes the lower limit
regarding the real part for small Helmholtz numbers, it is the upper limit for the
imaginary part. In the ``stiffness governed'' region, moreover, the slope of the
imaginary part of the beam mobility changes markedly as the depth to indenter
length ratio changes. For the upper range of Helmholtz numbers, the real part of
the beam mobility tends to that of the edge-excited plate irrespective of depth
whereas a pronounced wave guide behaviour dominates the imaginary part for
depth to indenter length ratios below 100.
The observation that the real part of the beam mobility generally has a higher

value than the semi-in®nite plate in an intermediate region can be explained by
the dissipative losses present for the former structure while the plate is treated as
non-dissipative. In Figure 5 is shown the real part of the beam mobility in the

Figure 7. Normalized real (top) and imaginary (bottom) parts of deep beam mobility, H=` � 5.
ÐÐ Numerical evaluation Approximations according to � � � � � � equations (11), - - - - (14) and
(14a); - � - � -, (15) and (17b).
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extreme case of H=` � 1000 for two different values of the loss factor. As the
dissipative losses are reduced a reduction of the real part is manifested for
Helmholtz numbers smaller than unity. For the upper range, however, the
results are, as expected, unaffected. Physically, this originates from the so-called
Lamb waves, cf. references [6, 8], present in the ®nite depth case, which, owing
to the losses, also establish small but numerous propagating wave components.
It should be pointed out that in the numerical evaluation of the beam mobility, a
loss factor of 10ÿ3 was assigned as the reference value. Therefore, in order to
account for the surface wave contributions, the characteristic mobility of shear
waves can be employed in this range.
The transfer mobilities to positions at the end of and just outside the indenter

are shown in Figure 6. From this comparison a small variation with distance is
evident in the region where the mobility follows that of a pure stiffness. This
variation, however, is not typical for a local deformation where the mobility
decreases rapidly outside the excited area [7]. Moreover, it is observed that
the variation increases with Helmholtz number, another aspect which is not

Figure 8. Normalized real (top) and imaginary (bottom) parts of deep beam mobility,
H=` � 10. ÐÐ Numerical evaluation Approximations according to equations � � � � � �, (11); - - -,
(14) and (17a); - � - �-, (15) and (17b).
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typical for a mobility controlled by local deformation but rather allied with
propagating waves.

3. COMPARISON OF APPROXIMATIONS AND NUMERICAL RESULTS

In Figures 7±11, the trends of the closed form approximations established in
the preceding section are compared with the numerically evaluated results. For
the real part it is clear that there are two ingredients involved below the
fundamental dilatational resonance. The lower asymptote, as expected, is that of
a slender beam. From the anti-resonant region and beyond the dilatational
resonance, the higher order waves contribute, supplemented by energy
propagation due to the evanescent waves. In the region above Helmholtz
number equal to unity, the beam behaves essentially as a rod of cross-sectional
dimensions equal to the width of the beam and the length of the indenter cf.
reference [1]. With respect to the imaginary part, a similar transition is observed
with the slender beam behaviour governing the small Helmholtz number range

Figure 9. Normalized real (top) and imaginary (bottom) parts of deep beam mobility,
H=` � 20. ÐÐ Numerically evaluation Approximations according to equations � � � � � �, (11); - - -,
(14) and (17a) - � - � -, (15) and (17b).
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up to the anti-resonance. There above, a distinction must be made between
moderately deep and deep beams respectively. In the former case the waveguide
effects are pronounced and sharp peaks and troughs relating to the onset of
higher order travelling waves dominate the pattern. For the latter case however,
such a waveguide behaviour is shadowed by the in¯uence of the distributed
excitation establishing a smoother pattern with peaks and troughs largely
controlled by the excitation wavenumber spectrum. Also the overall decrease and
asymptotic vanishing of the imaginary part become more clear for deep beams.
From the comparison with the closed form approximations derived, it is

evident that the real part can be satisfactorily described in the lower and upper
regions by the respective asymptotes. For the intermediate range, however, a
combination of the approximations appears to be required to take into account
the dilatational resonance as well as the energy propagation by higher order
waves. With respect to the imaginary part the distinction between moderately
deep and deep beams must be observed. For H=`E10, the slender beam
behaviour satisfactorily describes the low Helmholtz number range while the
in®nitely deep beam envelope only in an overall sense depicts the behaviour in
the upper range. At the resonance, the contribution from the quasi-longitudinal

Figure 10. Normalized real (top) and imaginary (bottom) parts of deep beam mobility,
H` � 100. ÐÐ Numerical evaluation Approximations according to � � � � � �, equations (11); - - -,
(14) and(17a); - � - � -, (15b) and (17b).
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wave has to be included. For larger ratios H=`, the intermediate range of
Helmholtz numbers is increasingly dominated by the high order travelling and
evanescent waves and the in¯uence of the dilatational resonance is markedly
reduced. This means that the logarithmically weighted stiffness approximation
applies.
In Figures 12 and 13, two previously reported approximations for the

imaginary part of the force mobility are compared with the numerical results for
two different beam con®gurations. It is seen that while the approximation
developed by Heckl [4], irrespective of beam height to indenter length ratio, gives
a satisfactory description of the imaginary part for small Helmholtz numbers,
the approximation proposed by Ljunggren [5] renders an over-estimate.

4. ESTIMATION PROCEDURE

Based on the preceeding theoretical and numerical analysis, an estimation
procedure for the edge-excited deep beam can be developed. For the real part,
the region of small Helmholtz numbers is essentially controlled by the beam
characteristics up to the fundamental dilatational resonance. From the preceding

Figure 11. Normalized real (top) and imaginary (bottom) parts of deep beam mobility,
H=` � 1000. ÐÐ Numerical evaluation Approximations according to � � � � � �, equations (11);
- - - (14) and (17a) - � - �-, (15) and (17b).
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anti-resonant region where the minimum is set by the real part of the edge-

excited semi-in®nite plate, the mobility rises to the resonance. Above the

resonance, the behaviour is in general governed by the energy propagated by

quasi-longitudinal waves in an equivalent rod but the depth of the beam controls

the transition. For small ratios of depth to indenter length, the real part settles

at the characteristic rod mobility almost immediately above the dilatational

resonance. As the depth to indenter ratio increases, all in-plane waves carry

energy and an intermediate region is established in which the real part overall

increases linearly.

With respect to the imaginary part a distinction must be made between

moderately deep and deep beams since in the former case, as for the real part,

the dilatation resonance markedly affects the dynamics. In the case of deep

beams a procedure for the imaginary part, in the range above that of beam

Figure 12. Normalized imaginary part of deep beam mobility, H=` � 5: ± ± ± ±, numerically
evaluated; � � � � � �, approximations according to Heckl [4] and - - -, Ljunggren [5].

Figure 13. Normalized imaginary part of deep beam mobility, H=` � 1000: Ð, numerically
evaluated; � � � � � �, approximations according to Heckl [4] and - - -, Ljunggren [5].
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behaviour, is proposed to follow,

Im�Y1�F, s�1
2

p
kT`

�1� ��
sin�1� ��kT`
�1� ��kT`

� �2 ln
2�1� ��

kT`

� �
; kT`E p

1� �
ln�2�1� ���
�kT�2

; kT`e p
1� �

8>>><>>>:
9>>>=>>>;: �20�

The choice for relating the constants to the material properties is based upon the
results of parameter studies but it must be emphasized that even though the
functional dependencies are theoretically quali®ed, the ®tted constants are only
numerically underpinned and not explicitly proven.
Upon compiling the various expressions for the different regions and different

ratios of beam depth to indenter length, the estimation procedure proposed
is summarized in Tables 1 and 2. The estimated mobilities for two radically
different beam con®gurations are exempli®ed in Figures 14 and 15.
For both beam con®gurations, it is seen that overall a conservative estimate is

established with respect to the real part. Since only a single higher order mode is
included to establish the dilatational resonance, an under-estimate would result
in the anti-resonant region from beam behaviour only. Moreover, the estimated
response at the dilatational resonance would be incorrect. Unfortunately, the

Figure 14. Comparison of estimated � � � � � � and numerically evaluated ± ± ± ± force mobility;
H=` � 5.
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fact that the shear±tensional near®eld converts part of the evanescent waves into
propagating ones means that an estimate for the peak value becomes unwieldy.
To circumvent these de®ciencies, it is proposed that a summation of the
contributions from higher order modes of vibration as given by the edge-excited,
semi-in®nite plate and that from the single dilatational mode, approximately
accounts for the energy transmission in the transition region. For deep beams,
the discrepancy following from the non-dissipative model for the edge-excited
semi-in®nite plate is taken into account by relating the estimation to shear
waves.
Regarding the imaginary part for moderately deep beams, the estimation

procedure compares satisfactorily with calculated results up to the dilatational
resonance. Again, the complication at the resonance stemming from the intricate
wave ®eld is circumvented. In the upper region the procedure captures the
overall trend but ignores the waveguide effects.
Overall the estimation procedure performs satisfactorily for the imaginary part

and deep beams. Discrepancies are primarily found towards the lower and upper
ends of the interval considered. The asymptotic beam behaviour, however, is
guaranteed for Helmholtz numbers tending to zero. At the upper end of the
interval it is seen that the modulation due to the distributed excitation only is
captured approximately.

Figure 15. Comparison of estimated (� � � � �) and numerically evaluated (± ± ± ±) force mobility;
H=` � 100.
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5. CONCLUDING REMARKS

This study, devoted to two-dimensional wave-guides, clearly highlights the
intricate interplay between propagating and evanescent waves for moderately
deep and deep beams, making the development of physically correct, yet
manageable estimation procedures more challenging than in the case of thick
plates.
It can be concluded that for deep beams, ideal point excitation realizes an

in®nite, linear theory response. The dynamic characteristics of this structural
system therefore imply a distributed excitation with its features primarily
manifested in the region of Helmholtz numbers larger than p. It is further found
that, as for plates, the shear±tensional near®eld plays a signi®cant role for the
dynamic characteristics of deep beams but from the frequency where the cross-
sectional, in-plane motion opposes the slender beam bending behaviour (rigid
beam lamina). Above this transition, from essentially mass- to stiffness-
controlled behaviour in the force mobility case, the analysis shows that Lamb
waves contribute to the propagation of energy when dissipation in physically
realistic materials is taken into account. This phenomenon hence constitutes a
clear distinction between deep and in®nitely deep beams since the Lamb waves
are annulled for the latter con®guration. It can thus be concluded that the real
part of the force mobility is larger in the ®nite case than in the in®nite in this
range up to the point where the length of the excitation area equals half the
wavelength of the shear wave. For larger Helmholtz numbers, the active, ®nite
depth characteristics approach those of the in®nite case which can be interpreted
as those of an axially excited rod of cross-section equal to that of the excitation
area. This has a correspondence in the case of ¯uid-borne sound where the lobes
from a radiator becomes highly directive.
For the reactive part of the dynamic characteristics, the in®nitely deep beam

furnishes a valid model in the intermediate range whereas the waveguide effects
dominate the characteristics for large Helmholtz numbers and ®nite depths
which are not easily captured in closed form. The envelope to the dynamic
characteristics of in®nitely deep beams in the upper range, however, establishes
the overall trend. Based on the edge-excited, semi-in®nite plate model, a
logarithmically weighted, stiffness controlled response is inferred above the
dilatational resonance. Owing to the logarithmic weighting therefore, it is strictly
not correct to regard the shear±tensional near®eld effects as pure local
deformation.
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APPENDIX I: EDGE-EXCITED, SEMI-INFINITE PLATE.

Allowing the beam depth to be in®nite there are no re¯ected waves and the
potential and stream functions take the forms,

F�x, y� � F�eÿiqLy eikx, C�x, y� � C� eÿiqTy eikx: �AI:1a, b�
With the particle velocity and the pertinent stresses as given in reference [1], i.e.,

vy � @F=@yÿ @C=@x, �AI:2�
and

sy � 2G

io�1ÿ ��
@2F
@y2
� � @

2F
@x2
ÿ �1ÿ �� @

2C
@x@y

� �
,

txy � 2G

io
@2F
@x@y

� 1

2

@2C
@y2
ÿ @

2C
@x2

� �� �
respectively and the conditions at the boundary y=0,

sy � ŝ eikx; jxjE`
0 ; jxj > 0

and txy � 0:

�
�AI:3a, b�

The relation between the unknown coef®cients is found to be given by

C� � ÿŝ io
G

2qLk=��2k2 ÿ k2T�2 � 4qLqTk
2� �AI:4�

and

F� � ŝ
io
G
�2k2 ÿ k2T�=��2k2 ÿ k2T�2 � 4qLqTk

2�: �AI:5�

This means that the particle velocity becomes,
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vy � ÿŝ o
G
k2Tf�qL=�2k2 ÿ k2T�2 � 4qLqTk

2�g eÿiqLy eikx: �AI:6�

Assuming a soft indenter, the stress wavenumber spectrum is obtained as

ŝ�k, z� � F

2lt

�`
ÿ`

eikx dx � F

t

sin k`

k`
�AI:7�

and applying the inverse transform, the mobility is found to be given by,

Y1vF � ÿ
o

2pGt
k2T

�1
ÿ1

sin k`

k`

� �2
qL eiqLy dk

��2k2 ÿ k2T�2 � 4qLqTk2�
:

By specializing on the ``point'' mobility on a complex power basis and
recognizing that the integrand is symmetric yields the normalized result,

Y1vF � ÿ
2kT`

p
k20

�1
0

sin k`

k`

� �2
qL dk=��2k2 ÿ k2T�2 � 4qLqTk

2�: �AI:8�

Owing to the branch points, three regions of integration have to be considered:

S � k2T
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qL dk
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where b2= (1ÿ�)/2.

APPENDIX II: SYMBOLS AND NOTATION

B ¯exural stiffness
E Young's modulus
F force
G shear modulus
H beam height
I integral
M integration limit
N denominator
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R residue
S area
Y mobility
g integration factor
h half the beam height
i imaginary unit
k wavenumber
` half the length of indenter
m 0 0 mass per unit area
q wavenumber radical
t width of beam
v translational velocity
x, y, z Cartesian co-ordinates
F potential function
C stream function
L norm
a factor
b auxiliary variable
e small number
gE Euler's constant
l wavelength
k normalized wavenumber
x number
x, Z, z Cartesian co-ordinates
Z loss factor
o angular frequency
r density
s normal stress
t shear stress
� Poisson's ratio
indices:
B ¯exural
C continuum
F force
L longitudinal
R Rayleigh wave
T transverse
n order
s soft indenter, source
v lateral translational velocity
notation:

normalized quantity
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